Step of Proof: member_nth_tl
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
member
nth
tl
:
T
:Type,
n
:
,
x
:
T
,
L
:(
T
List). (
x
nth_tl(
n
;
L
))
(
x
L
)
latex
by InductionOnNat
latex
1
: .....basecase..... NILNIL
1:
1.
T
: Type
1:
x
:
T
,
L
:(
T
List). (
x
nth_tl(0;
L
))
(
x
L
)
2
: .....upcase..... NILNIL
2:
1.
T
: Type
2:
2.
n
:
2:
3. 0 <
n
2:
4.
x
:
T
,
L
:(
T
List). (
x
nth_tl(
n
- 1;
L
))
(
x
L
)
2:
x
:
T
,
L
:(
T
List). (
x
nth_tl(
n
;
L
))
(
x
L
)
.
Definitions
Void
,
a
<
b
,
n
-
m
,
n
+
m
,
-
n
,
#$n
,
A
,
False
,
i
j
,
A
B
,
{
x
:
A
|
B
(
x
)}
,
x
:
A
.
B
(
x
)
,
P
Q
,
(
x
l
)
,
type
List
,
x
:
A
B
(
x
)
,
Type
,
,
t
T
,
s
=
t
Lemmas
ge
wf
,
nat
properties
,
l
member
wf
,
nat
wf
,
nat
ind
tp
origin